# CRIX - a CRyptocurrency IndeX

Simon Trimborn Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de





# Currencies - Cigarettes, USD, Cryptos

Everything can be a currency



Figure 1: Cigarette trading in postwar germany (59) CRIX - a CRyptocurrency IndeX ——  Everyone can offer a currency



Figure 2: Fridrich A. Hayek (59)



# **Digital Economy**

- 🖸 Amazon
- 🖸 Paypal
- 🖸 Google Wallet
- Cryptocurrencies
- 🖸 Ripple









#### Decentralized, virtual, low transaction costs



■ NYSE, Andreesen Horowitz, DFJ: Coinbase funding (75 M\$)

- Nasdaq: company-wide utilization of blockchain technology
- Citigroup: own coin development



# **Cryptocurrencies** - Facts

#### □ As of 20151011, CoinMarketCap.com

- 636 cryptos
- 2,022 exchange pairs
- Market Cap 4.1 billion USD

#### Barely derivatives

- Commodity Futures Trading Commission (USA)
  - Cryptos are commodities



# Challenges

- What is the benchmark?
- ☑ How does the market evolve?
- Market index necessary to compare cryptos



# What is the benchmark?



# CRIX - the benchmark



Figure 4: Screenshot: crix.hu-berlin.de (20150901)



# Outline

- 1. Motivation  $\checkmark$
- 2. Market Index CRIX
- 3. CRIX family comparison
- 4. Simulation Study
- 5. Application to german stock market
- 6. Conclusion
- 7. Appendix



# Data

#### ⊡ 194 cryptos

- Time period: 20140101 20150901
- Prices, capitalization, volumes
- ⊡ CoinGecko



# CRIX - Rules I

🖸 Laspeyres' idea:

$$CRIX(k)_t = rac{\sum_{j=1}^k MV_{jt}}{Divisor}$$

*MV<sub>jt</sub>*: market capitalization of crypto j

- ☑ k: number of constituents
- ☑ Liquidity rule:
  - Eligible if higher rank than 0.25 percentile
  - Measure regarding daily volume in USD and coins

→ Add. Rules → Liquidity Rule → Unused Bitcoins



# CRIX - Rules II

#### 🖸 Spine

- Index members
- Crucial for benchmark fit

$$CRIX(k)_t \stackrel{\min(k)}{\rightarrow} \text{total market}_t$$

• total market 
$$_t = \frac{\sum_{j=1}^{J} M V_{jt}}{Divisor}$$

- ▶ Here: *J* = 194
- Quadratic loss function
- Sparse benchmark



# CRIX - Rules III

- 1. Construct total market index: total market<sub>t</sub> =  $\frac{\sum_{j=1}^{194} MV_{jt}}{Divisor}$
- 2. Set i = 1
- 3. Construct  $CRIX(k_i), i = 1, 2, 3, \dots, k_1 < k_2 < k_3 < \cdots$
- 4. Compute  $\varepsilon_{it} = \text{total market}_t CRIX(k_i)_t$
- 5. Kernel density estimation for density  $f(\varepsilon_{it})$  with leave-one-out cross validation
- 6. Derive  $BIC_i = -2 \log \prod_{t=1}^n f(\varepsilon_{it}) + k_i \log(n)$
- 7. If i = 1: Jump to 3., else 8.
- 8. If  $BIC_{i-1} < BIC_i$ : stop, else jump to 3. and i = i + 1

▶ KDE ▶ US indices



# **CRIX** family

#### ⊡ CRIX

▶  $k_1 = 5$ 

Step width: 5 constituents

Local optimum

ECRIX

$$\blacktriangleright \quad k_1 = 1$$

Step width: 1 constituents

Local optimum

EFCRIX

$$\blacktriangleright \quad k_1 = 1$$

- Step width: 1 constituents
- Optimum

CRIX - a CRyptocurrency IndeX —



# Index members

- Compare last 3 M
- Amount used for next 3 M

| Period | CRIX | ECRIX | EFCRIX | Maximum achievable |
|--------|------|-------|--------|--------------------|
| 1      | 5    | 42    | 45     | 45                 |
| 2      | 15   | 10    | 120    | 120                |
| 3      | 35   | 4     | 57     | 171                |
| 4      | 30   | 4     | 134    | 194                |

Table 1: Number of constituents in respective periods





# **CRIX** performance



# **ECRIX** performance



# **EFCRIX** performance



### Loss comparison I



# Loss comparison II

|                         | MSE    | MDA    |
|-------------------------|--------|--------|
| CRIX vs. Total Market   | 3.0441 | 0.9949 |
| ECRIX vs. Total Market  | 4.4467 | 0.9975 |
| EFCRIX vs. Total Market | 1.6541 | 1.0000 |

Table 2: Comparison of CRIX, ECRIX, EFCRIX against total market **Q**CRIXfamdiffloss



# Simulation I

- ☑ 300 simulated time series
- Prices log normal distributed
- ☑ 3 groups of 100 time series each
- Number of shares/coins constant over time, simulated with uniform distribution
- BIC computation quarterly
- Index members exchange quarterly



4-1

# Simulation II

$$\begin{array}{c|c} & \sigma_{ij}^2 \text{ variance in period } i, \text{ group } j \\ \hline & 5 \text{ periods} \\ & 1. 12 \text{ month} \\ & \bullet & \sigma_{11}^2 = 0.005, \sigma_{12}^2 = 0.01, \sigma_{13}^2 = 0.015 \\ \hline & 2. 3 \text{ month} \\ & \bullet & \sigma_{21}^2 = \sqrt{0.005}, \sigma_{22}^2 = \sqrt{0.01}, \sigma_{23}^2 = \sqrt{0.015} \\ \hline & 3. 6 \text{ month} \\ & \bullet & \sigma_{31}^2 = 0.005, \sigma_{32}^2 = 0.01, \sigma_{33}^2 = 0.015 \\ \hline & 4. 3 \text{ month} \\ & \bullet & \sigma_{41}^2 = \sqrt{0.005}, \sigma_{42}^2 = \sqrt{0.01}, \sigma_{43}^2 = \sqrt{0.015} \\ \hline & 5. 6 \text{ month} \\ & \bullet & \sigma_{51}^2 = 0.005, \sigma_{52}^2 = 0.01, \sigma_{53}^2 = 0.015 \\ \end{array}$$

CRIX - a CRyptocurrency IndeX ——



# Simulation III

| Period | Decision period | Applied period |
|--------|-----------------|----------------|
| 1      | calm            | calm           |
| 2      | calm            | calm           |
| 3      | calm            | turbulent      |
| 4      | turbulent       | calm           |
| 5      | calm            | calm           |
| 6      | calm            | turbulent      |
| 7      | turbulent       | calm           |
| 8      | calm            | calm           |

Table 3: Behavior of market in the periods and the behavior of the market to which the amount of constituents is applied

▸ Empirical Quantiles

CRIX - a CRyptocurrency IndeX \_\_\_\_\_



# Simulation IV

| Period | Mean members |
|--------|--------------|
| 1      | 14.62        |
| 2      | 15.16        |
| 3      | 13.14        |
| 4      | 13.79        |
| 5      | 17.73        |
| 6      | 15.76        |
| 7      | 16.03        |
| 8      | 19.79        |

Table 4: Mean number of constituents in respective periods for simulated time series



# Simulation V

- □ Less index members in more equally divided market
- ⊡ Market dominator causes number of index members to rise
- In calmer market environment tendency to more index members



# CRIX methdodology & German stock market

- 🖸 German Prime Standard
- ☑ Basis for DAX, MDAX, SDAX, TecDAX
- DAX often interpreted as market indicator
- DAXCRIX
  - CRIX methodology applied to Prime Standard companies
  - ▶ Time period: 20040101 20130430
  - ▶ Yearly constituent list of Prime Standard
  - BIC computation yearly
  - Index members exchange quarterly



## Index members DAXCRIX

| Period | DAXCRIX | DAX | Maximum achievable |
|--------|---------|-----|--------------------|
| 1      | 20      | 30  | 390                |
| 2      | 15      | 30  | 339                |
| 3      | 25      | 30  | 310                |
| 4      | 5       | 30  | 329                |
| 5      | 30      | 30  | 328                |
| 6      | 30      | 30  | 285                |
| 7      | 45      | 30  | 245                |
| 8      | 20      | 30  | 172                |
| 9      | 30      | 30  | 223                |

# Loss comparison DAX & DAXCRIX

|                          | MSE      | MDA  |
|--------------------------|----------|------|
| DAXCRIX vs. Total Market | 2612.62  | 0.94 |
| DAX vs. Total Market     | 21148.60 | 0.78 |

Table 6: Comparison of DAX with CRIX methodology (DAXCRIX) and rescaled DAX against total market **Q**DAXCRIXloss



# Conclusion

- ☑ CRIX represents market very good
- EFCRIX best but too many constituents
- ⊡ Choice of CRIX well in terms of MSE and MDA
- Methodology enhances fit to German stock market
  - But strategy may cause high transaction costs
  - ▶ Use analysis as lower bound of index members



# CRIX - a CRyptocurrency IndeX

Simon Trimborn Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de







# Bibliography

 Simon Trimborn and Wolfgang Karl Härdle (2015)
CRIX or evaluating Blockchain based currencies
Oberwolfach Report No. 42/2015 "The Mathematics and Statistics of Quantitative Risk"
DOI: 10.4171/OWR/2015/42



# Bitcoin





- Anonymity
- Needs of users
  - Decision on structure

▶ Movie: Bitcoin - Made simple



# Anonymity - Black market

- 🖸 Wallets are anonym
- Transactions are anonym
- 🖸 Blockchain core feature
- Causes problems



Figure 9: US government warning Source: www.wikipedia.org



# The Blockchain - Spine of Bitcoin

- 🖸 Transaction list
- Transaction processors called miners
- Miners collect & publish transactions
- 🖸 Order is invariable









# The Blockchain

- Sometimes parallel chains
  - Due to e.g. internet lag
- Green block: first block (Genesisblock)
- 🖸 Black blocks: main chain
- Purple blocks: parallel chains



Figure 11: Blockchain

Source: www.wikipedia.de

CRIX - a CRyptocurrency IndeX



# The Blockchain - Lag

Assume: 2 blocks mined simultaneously

- ▶ Miner 1: Australia
- Miner 2: Germany
- Effect of lag:
  - Some receive australian block
  - Some receive german block
- 🖸 Parallel chain
- ☑ For next block:
  - Check which chain contains the most difficult to find blocks
  - Becomes main chain


#### **Process of Transactions**

- Users organize process
- ☑ Some users (miners) create transaction list
  - Next block of blockchain
- ☑ Blocks have strict order, ensured by signature
- Miners search for signature
- Signature encrypted by cryptography



Transaction example

### Who accepts Bitcoin?

- 🖸 Overstock Retailer
- 🖸 Dell
- 🖸 University of Cumbria
- 🖸 Expedia Travel booking agency
- 🖸 Republican Party of Louisiana



back: Index Construction

#### Bitcoin - The System I

- 🖸 Take 4 people
  - Alice, Bob
  - ▶ Gary, Grace
- 2 special users (miners)
  - Gary
  - Grace
- ⊡ Alice buys a rare book from Bob and pays with Bitcoin
- □ Gary and Grace process this transaction





## Bitcoin - The System III

- □ Gary OR Grace receive Bitcoins for service
- BOTH add transaction to list
- BOTH compute hash value (trial and error)
- Click for online hash generator
- List: one block of the blockchain
- ⊡ Hash value: gives position of block in blockchain
- ☑ Contains part of hash value of last block



#### CRIX - Add. Rules

☑ High volatility: weights recalculated 1 M

- Maximum weight of CRIX member: 50 %
- ☑ Crypto made insensitive if trading stops

#### Back



## Liquidity Rule I

🖸 Rely often on turnover

 $Turnover = \frac{Volume}{Floating \ Coins}$ 

- Floating Coins for cryptos unclear
- 🖸 Rule motivated by STOXX Japan 600 & AEX Family
- Measure relative to asset universe
- Small trading volume in USD but high traded coins taken into account



### Liquidity Rule II

Liquidity rule (one of these):
 1. 0.25 percentile of ADTV (Average Daily Trading Volume):
 ADTV<sub>i</sub> ≥ ADTV<sub>0.25</sub>

2. 0.25 percentile of ADRTC (Average Daily Relative Traded Coins):

 $ADRTC_i \geq ADRTC_{0.25}$ 

#### $\boxdot$ Checked every month



#### **Usage of Bitcoins**

#### Percentage of last time a coin of Bitcoin was used



## Methodology

GARCH(1,1) 
$$\sigma_t^2 = \alpha_0 + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

 $\boxdot$  Full variance for time horizon T

$$\sigma_T^2 = \sum_{t=1}^T \sigma_t^2$$





#### GARCH parameters

|      | alpha0     | alpha      | beta       |
|------|------------|------------|------------|
| CRIX | 0.00007572 | 0.08457491 | 0.88392853 |
| DAX  | 0.00000257 | 0.09926597 | 0.89304179 |

Table 7: Parameters of the GARCH(1,1) models without mean for CRIX and DAX





#### **Rolling window GARCH parameters**



Figure 13: Upper plot: Mean of CRIX log residuals in 250 data windows, Lower plot:  $\alpha$ ,  $\beta$  GARCH(1,1) parameters for 250 data points rolling windows • back CRIX - a CRyptocurrency IndeX

#### Index members

| Period | 1   | 2   | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|--------|-----|-----|------|------|------|------|------|------|------|------|
| 1      | btc | ltc | msc  | n×t  | nmc  | doge | mec  | wdc  | ftc  | zet  |
| 2      | btc | ×rp | ltc  | ppc  | doge | n×t  | msc  | nmc  | pts  | qrk  |
| 3      | btc | ×rp | tc   | ррс  | doge | pts  | ×pm  | mec  | vtc  | ybc  |
| 4      | slr | blk | pts  | hbn  | pot  | prt  | efl  | zeit | cb×  | fair |
| 5      | slr | pts | safe | rdd  | prt  | grcx | pnd  | cb×  | karm | mona |
| 6      | btc | ltc | n×t  | ррс  | ×c   | zet  | ftc  | mec  | ifc  | ybc  |
| 7      | btc | ltc | n×t  | ×rp  | ррс  | dash | doge | nmc  | msc  | blk  |
| 8      | btc | ltc | ×rp  | bt s | n ×t | ppc  | dash | doge | nmc  | safe |
| 9      | btc | tc  | ×rp  | bt s | n ×t | doge | ррс  | dash | nmc  | safe |
| 10     | btc | ×rp | ltc  | bt s | doge | n×t  | ррс  | dash | nmc  | safe |
| 11     | btc | ×rp | ltc  | bt s | doge | n×t  | ррс  | хср  | safe | dash |
| 12     | btc | ×rp | tc   | bt s | safe | doge | n×t  | str  | ррс  | хср  |
| 13     | btc | mtc | ×rp  | ltc  | хру  | bts  | safe | str  | doge | n×t  |
| 14     | btc | ×rp | ltc  | bt s | doge | sync | safe | dash | хру  | str  |
| 15     | btc | ×rp | ltc  | bt s | dash | doge | n×t  | safe | str  | хру  |
| 16     | btc | ×rp | ltc  | dash | bts  | str  | doge | safe | n ×t | banx |
| 17     | btc | ×rp | ltc  | dash | str  | doge | bt s | n ×t | safe | banx |
| 18     | btc | ×rp | ltc  | bt s | doge | str  | dash | n×t  | banx | ррс  |

Table 8: First 10 CRIX constituents in the respective periods



# Heston Nandi GARCH(1,1) Option Pricing model for European Options

☑ Log returns X<sub>t</sub> follow process:

$$X_t = r_f + (\mu - \frac{1}{2})\sigma_t^2 + \sigma_t Z_t \tag{1}$$

with  $r_f$  risk free rate,  $Z_t \sim N(0,1)$ ,  $\mu$  the mean and  $\sigma_t^2$  a GARCH(1,1) process.

GARCH(1,1) process:

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha (Z_{t-1} - \gamma \sigma_{t-1})^2$$
(2)

#### ▶ back

CRIX - a CRyptocurrency IndeX —



## **Risk neutrality**

Transform (1) and (2)

☑ Receive risk neutral versions

$$X_t = r_f + (\mu - \frac{1}{2})\sigma_t^2 + \sigma_t Z_t^*$$

and

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha (Z_{t-1}^* - \gamma^* \sigma_{t-1})^2$$

with  $Z_t^* = Z_t + \mu \sigma_t$  and  $\gamma^* = \gamma + \mu$ .



#### Log-linear generator function

$$f( heta) = S_t^{ heta} \exp \left( A_{t;T, heta} + B_{t;T, heta} \sigma_{t+1}^2 
ight)$$

where

$$A_{t;T,\theta} = A_{t+1;T,\theta} + \theta r_f + B_{t+1;T,\theta}\omega - \frac{1}{2}\log(1 - 2\alpha B_{t+1,T,\theta})$$
$$B_{t;T,\theta} = \theta(\mu - \frac{1}{2} + \gamma) - \frac{1}{2}\gamma^2 + \beta B_{t+1;T,\theta} + \frac{1/2(\theta - \gamma)^2}{1 - 2\alpha B_{t+1;T,\theta}}$$

with terminal conditions

$$A_{T;T,\theta} = 0$$
$$B_{T;T,\theta} = 0$$

|  |  | С |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |





#### **Heston Nandi Options**

■ European Call option

$$C_{t} = \frac{1}{2}S_{t}$$

$$+ \frac{\exp\{-r(T-t)\}}{\pi} \int_{0}^{\infty} \Re\left\{\frac{K^{-i\theta}f^{*}(i\theta+1)}{i\theta}\right\} d\theta$$

$$- K \exp\{-r(T-t)\} \left[\frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \Re\left\{\frac{K^{-i\theta}f^{*}(i\theta)}{i\theta}\right\} d\theta\right]$$

where C Call price, St asset price, K strike price and ℜ real part of a complex number. f\* the risk neutral version of f.
⊡ Put-Call parity for Put price:

$$P_t = C_t + K \exp\{-r(T-t)\} - S_t$$



## Kernel Density Estimation (KDE)

Compute pdf with KDE

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right)$$

with K(u) Gaussian kernel, h bandwidth

Bandwidth selection with Wand & Jones plug-in estimator

🕨 back



#### Simulation Study I



#### Simulation Study II



#### Simulation Study III



8-26

#### Simulation Study IV



## Attributions

- Cigarette trading in postwar germany, Bundesarchiv, Bild 183-R79014 / CC-BY-SA
- By The original uploader was DickClarkMises at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

